Geodetic techniques for time and frequency comparisons using GPS phase and code measurements
نویسنده
چکیده
We review the development and status of GPS geodetic methods for high-precision global time and frequency comparisons. A comprehensive view is taken, including hardware effects in the transmitting satellites and tracking receiver stations, data analysis and interpretation, and comparisons with independent results. Other GPS techniques rely on single-frequency data and/or assume cancellation of most systematic errors using differences between simultaneous observations. By applying the full observation modelling of modern geodesy to dual-frequency observations of GPS carrier phase and pseudorange, the precision of timing comparisons can be improved from the level of several nanoseconds to near 100 ps. For an averaging interval of one day, we infer a limiting Allan deviation of about 1.4× 10−15 for the GPS geodetic technique. The accuracy of time comparisons is set by the ability to calibrate the absolute instrumental delays through the GPS receiver and antenna chain, currently about 3 ns. Geodetic clock measurements are available for most of the major timing laboratories, as well as for many other tracking stations and the satellites, via the routine products of the International GPS Service. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
High Precision Time and Frequency Transfer Using Gps Phase Measurements
The use of GPS CIA code measurements for time transfer by means of the so-called common view method is a widely accepted technique. The fuU pdeniiul of the GPS system for time and frequency transfer is, however, only exploited by using all phase and code observables from aU satellites in view. Gedetic processing techniques, adapted to the specifi requirements to process data from specWy modifie...
متن کاملIGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation
The development within the International GPS Service (IGS) of a suite of clock products, for both satellites and tracking receivers, offers some experiences which mirror the operations of the Bureau International des Poids et Mesures (BIPM) in its formation of TAI/UTC but some aspects differ markedly. The IGS relies exclusively on the carrier phase-based geodetic technique whereas BIPM time/fre...
متن کاملLeast Squares Techniques for GPS Receivers Positioning Filter using Pseudo-range and Carrier Phase Measurements
In present study, using Least Squares (LS) method, we determine the position smoothing in GPS single-frequency receiver by means of pseudo-range and carrier phase measurements. The application of pseudo-range or carrier phase measurements in GPS receiver positioning separately can lead to defects. By means of pseudo-range data, we have position with less precision and more distortion. By use of...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملCompensation of Doppler Effect in Direct Acquisition of Global Positioning System using Segmented Zero Padding
Because of the very high chip rate of global positioning system (GPS), P-code acquisition at GPS receiver will be challenging. A variety of methods for increasing the probability of detection and reducing the average time of acquisition have been provided, among which the method of Zero Padding (ZP) is the most essential and the most widely used. The method using the Fast Fourier Transform (FFT...
متن کامل